Noise shielding using active acoustic metamaterials with electronically tunable acoustic impedance

نویسندگان

  • Pavel MOKRÝ
  • Kateřina STEIGER
  • Jan VÁCLAVÍK
  • Pavel PSOTA
  • Roman DOLEČEK
  • Pavel MÁRTON
  • Miloš KODEJŠKA
  • Martin ČERNÍK
چکیده

Noise pollution has become one of the most serious problems of our society. Considerable part of unpleasant noise is transmitted into the interior of buildings through large vibrating planar structures windows with poor noise-isolation properties caused by their low flexural rigidity. In this Paper, we demonstrate and analyze a noise shielding using an active acoustic metamaterial (AAMM) with electronically tunable acoustic impedance. The AAMM consists of a curved glass plate with attached piezoelectric Macro-Fiber Composite (MFC) actuators shunted by negative capacitor (NC) circuits. Using this approach, it is possible to electronically control the effective elasticity of the MFC actuators and, therefore, the flexural rigidity of the composite structure of the AAMM. Key features that control the acoustic impedance of the AAMM have been analyzed on a simplified analytical model. Frequency dependence of the acoustic impedance and the acoustic transmission loss through the AAMM are measured and compared. Vibration modes of the AAMM are optically measured using Digital Holographic Interferometry (DHI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact and Efficient Active Vibro-acoustic Control of a Smart Plate Structure

An effective wide band active control law through one kind of the Dynamic Vibration Absorber (DVA) is proposed and studied in this paper. With the help of mechanical impedance method, active DVA control law is formulated based on the passive mechanical model. The electrical DVA can generate multi-mode active damping to the structure. The host structure is an aluminum plate and acceleration sign...

متن کامل

Pro O F Co Py [ Vib - 09 - 1159 ] 017002 Vaj

Extensive efforts are being exerted to develop various types of acoustic metamaterials to effectively control the flow of acoustical energy through these materials. However, all these efforts are focused on passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of one-dimensional acoustic metamaterials with tunable effective den...

متن کامل

Active Noise Control in Pardis Coach using Different Fuzzy Controllers

In recent years, need to increase the convenience of trips in railway vehicles causes that train operators and manufacturers focus on reducing the noise level which is sensed by passengers. In this paper, first the state of modeling acoustic noise in cab train is discussed and natural frequencies and acoustic mode shapes are derived and then formulation of acoustic pressure in the cab will be o...

متن کامل

Tunable active acoustic metamaterials

We describe and demonstrate an architecture for active acoustic metamaterials whose effective material parameters can be tuned independently over a wide range of values, including negative material parameters. The approach is demonstrated experimentally through the design and measurement of two types of unit cells that generate metamaterials in which either the effective density or bulk modulus...

متن کامل

Tapered labyrinthine acoustic metamaterials for broadband impedance matching

We present five kinds of labyrinthine or space-coiling acoustic metamaterials with tapered channels and apertures. These designs exhibit negative index behavior with modest dispersion, and also have substantially improved impedance matching compared to previously investigated labyrinthine cells. Experimentally measured effective material parameters are in good agreement with numerically compute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014